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6.1 Introduction

In many scientific disciplines, observations are directions and are referred to as “directional
data”. A two-dimensional direction can be represented by (i) a vector in R? of length one
since magnitude has no relevance, (ii) by a complex number of unit modulus, (iii) by a point
of S1, the circumference of the unit circle centered at the origin, or (iv) by an angle measured
in radians or degrees. In this chapter, we adopt this last representation using radians. Data
representing two-dimensional directions is referred as “circular data.” Circular data arise in
many natural sciences, including geology, seismology, meteorology, animal behavior, and
s0 on just to name a few. Moreover, any periodic phenomenon with a known period can be
represented in terms of two-dimensional directions, such as the circadian rhythms.

The analysis of circular data relies on specific statistical procedures, which differ from
usual statistical methodology for the real line. Since there is no prescribed null direction
or sense of rotation (either clockwise or anticlockwise), it is important that procedures for
circular data remain independent of the arbitrary choices of the zero direction and of the
sense of rotation. The von Mises distribution provides one of the basic models for circular
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data. It is often considered as central as the normal distribution is, for linear data. However,
since there 1s no systematic mathematical rationale for invoking the von Mises distribution
as much as there 1s for using a normal distribution on the line, distribution-free or non-
parametric techniques assume a more important role in the context of circular data. This
chapter focuses on nonparametric tests for circular data and in particular on nonparametric
two-sample tests based on the so-called “spacing-frequencies”. In this chapter, the impor-
tance of this type of tests is stressed in terms of invariance properties. Moreover, tests based
on “circular ranks” on the circle can be reexpressed in terms of these spacing-frequencies.

Two seminal publications on circular distributions are Langevin (1905) and Lévy (1939)
and one pioneering statistical analysis of directional data is due to Fisher (1953). Two gen-
eral references are Mardia and Jupp (2000) and Jammalamadaka and SenGupta (2001).
There is considerable literature on modeling and analysis of circular data including, for
example, Rao (1969) and Gatto and Jammalamadaka (2007).

The remaining part of this chapter is organized as follows. Section 6.2 presents an
overview of spacing-frequencies tests for circular data. In particular, it presents some
careful analysis of the invariance, the maximality, and the symmetry properties. It then
reviews three well-known two-sample tests for circular data, which are the Dixon,
the Wheeler—Watson, and the Wald—Wolfowitz tests. A slight generalization based on
high-order spacing-frequencies, called multispacing-frequencies, is then reviewed. The
end of Section 6.2 mentions a conditional representation for the distribution of the
multispacing-frequencies, which allows one to derive the asymptotic normality and
a saddlepoint approximation. Section 6.3 provides an extension of Rao’s one-sample
spacings test (see Rao 1969, 1976) to the two-sample setting using the spacing-frequencies.
A geometrical interpretation of the proposed test statistic is provided. Its exact distribution
and a saddlepoint approximation are then discussed. Section 6.4 provides a Monte
Carlo comparison of the powers of Wheeler—Watson’s, Dixon’s and Rao’s two-sample
spacing-frequencies tests. In this study, it is demonstrated that if one of the two sam-
ples is suspected of coming from a certain bimodal distribution, Rao’s and Dixons’s
spacing-frequencies tests have comparable power, whereas Wheeler—Watson test, which
1s commonly used in this context, has substantially lower power. It may be remarked that
this deficiency is comparable to that suffered by Rayleigh’s test for uniformity in a single -
sample, when the data is suspected of not being unimodal.

6.2 Spacing-frequencies tests for circular data

Suppose we have two independent samples of circular data, the first sample consisting
of m independent and identically distributed (iid) circular random variables X, ..., X, ,
with probability distribution Py and a second sample of n iid circular random variables
Yi,...,Y,, with probability distribution Py-. As mentioned, these samples represent angles
in radians, with respect to some arbitrary origin and sense of rotation. Py and P, are cir-
cular distributions in the sense that they assign total measure one to [c, ¢+ 27), Ve € R.
The general two-sample problem is to test the null hypothesis that both these samples come

from the same parent population, viz.

Stating Hy in terms of the probability distributions or measures Py and Py, instead of the
usual formulation in terms of cumulative distribution functions (cdf), is more appropriate
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because the cdf depends on the choice of the null direction and the sense of rotation. For
convenience, we denote X = (X;,..., X, )andY = (¥},...,Y,).

6.2.1 Invariance, maximality and symmetries

Let X(;) < -+ < X, denote the circularly ordered values X1, ..., X,,, for a given origin
and sense of rotation. With I{A} denoting the indicator of statement A, the random counts

n m—1
ZI{Y € [X() X(jan)} for j=1,. ~1, and S,, =n— Y 5,

are commonly called (circular) spacing-frequencies, as they provide the number of
observations Y7, ...,Y, which lie in-between successive gaps made by X(y,..., Xy
A substantial amount of nonparametric theory for the real line is based on the “ranks,”
for example, refer to Sidak et al. (1999). If one were to define “ranks” on the circle
with respect to the same origin and sense of rotation (on which they depend), then the
spacing-frequencies S, . .., S, could be related to such ranks. Specifically, if R, denotes
the circular rank of the k' largest X, ..., X,,, in the combined sample, with origin given
by X and same sense of rotation as before, then

R,=k+>» 8, fork=1,...,m, (6.2)

(where 23:1 dof 0) Conversely,
Ry =R+ S,+1 fork=1,....,m—1,and R, =m+n—-35,
yield

Sy =Ry, —R,—1, for k=1,...,m—1, and §,,=m+n—R (6.3)

m?

sothat, S}, ..., S, may be thought of “rank-differences” when such ranks are well defined,
as they are on the line. Moreover, note that in this context, the spacing-frequencies are well
defined even in the presence of ties, that is, repeated values in the combined sample. Indeed,
there is no reason to assume absolute continuity (with respect to the Lebesgue measure) of
either Py or Py, whereas ranks have to be adapted whenever ties have positive probability
of occurring, for example, by defining “midranks.”

A natural question that arises in this context is the symmetry with respect to roles of
the two samples X and Y in the construction of the spacing-frequencies tests. Precisely, let

Yy < -+ £ Yy denote the circularly ordered values Y7, ..., Y, , for the same origin and
sense of rotation used with Sy, ..., S,,. The random counts
m n=1
=Y "X, € [V, Yy} for j=1,...,n—1, and S, =m — Y S
i=1 j=1

are called the “dual spacing-frequencies.” The next proposition addresses this question of
sample symmetry.
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Proposition 1

The dual spacing-frequencies S7, .. .,.S., can be obtained as a one-to-one function of the
original spacing-frequencies Sj,...,S,, and conversely, so that tests may be based on
either set of spacing-frequencies.

We show this result in case where Py and Py are absolutely continuous.

Proof
Assume Py and Py absolutely continuous. Let R}, denote the circular rank of the k™ largest
Y7,...,Y, in the combined sample, for k = 1,...,n, with origin given by X4, which is

the origin used for the original ranks, and same rotation sense as for the original ranks.
Then, we can compute the dual circular ranks as follows:

m k—1
Ri=1+)Y X, €[Xy),Yy)} and Ry =k+ R —14+) S, fork=2,...,n.
k=1 j=1

(6.4)
Given absolute continuity, we have

(R,,...,R.}={1,...,m+n\{Ry,..., R},

where the elements of the aforementioned sets are ordered from the smallest to the largest,
when going from left to right. We then obtain

S,=Rj.,—R,—1, for k=1,...,n—1, and S, =m+n— R, +R.
Conversely, absolute continuity yields
{R,,...,R }={1,....m+n}\{R},...,R,}
and S4,...,S5,, can be obtained through (6.3). ]

We can thus arbitrarily decide which sample is used for constructing the spacings and
which sample is used for obtaining the frequencies. Constructing tests based on either set -
of spacing-frequencies would make sense.

It turns out that the spacing-frequéncies play a central role in comparing two circular
distributions. This is because in many applied problems with circular data, the null
direction and the sense of rotation are arbitrarily chosen. Assume that all circular random
variables take values on [0,27) and denote by G the transformation group consisting
of all changes of origin (zero direction) and of the two changes of sense of rotation
0, 2m)™F™ — [0, 27)™*™, that is, for the two samples. We recall that a (two-sample test)
statistic 7" : [0, 27)™*™ — R is called invariant with respect to the transformation group G
if, for any (X,Y) and (X,Y) [0, 27)(™+7),

Jg e Gsuchthat (X,Y) =g(X,Y) = T(X,Y) =T(X,Y).
If, in addition to this, for any (X,Y’) and (X,Y") [0, 2m)™*™),
T(X,Y)=T(X,Y) = 3g € G such that (X,Y) = g(X,Y),

then the statistic 7' is a “maximal invariant”. It can then be shown that the statistic 7'
is G-invariant iff 7" is a function of maximal G-invariant. This leads us to ask whether
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(Sy...,S,,) is invariant or maximal invariant with respect to the transformation group G
and for the testing problem (6.1).

Consider first the equivalence classes generated by any maximal invariant for G, cf.
Schach (1969).

Proposition 2 o
The circular [0, 27)™*™-valued samples (X, Y) and (X, Y") belong to the same equivalence
class generated by G, iff

(S1y-3Sm) = (Sisgy -+ +sSmir), for somek € {0,...,m — 1},

with S’j =39 whenever j > m, or

j=m>

(Sl,,Sm)Z(Sm,,gl),

where (S),...,S,,) are the spacing-frequencies of (X,Y) and (Sy,...,S,,) are the

spacing-frequencies of (X,Y").
We often use the terminology that (X,Y) and (X, Y) are equal modulo G.

Proof
The transformation group of all changes of origin is made of the set of functions F;
[0, 27)™*™ — [0, 27r)™*™, which transform the spacing-frequencies of (X,Y) as

(Syy--y S, ) = (Sy, ..., S, 8).

The transformation group of sense reversions is made of the set of functions F,
[0, 27)™*™ — [0, 27r)™*" yielding

(Sl,---,Sm)H(Sm,...,Sl),

when clockwise changes to anticlockwise. The transformation group G is made of F; U F,,.
So we clearly obtain the equivalence classes mentioned in Proposition 2. U

Theoretically, one can obtain the desired G-invariance by taking, for example, the supre-
mum or the average of any function of Sy, ..., S, over the given equivalence classes, but
this approach seems clumsy and should not lead to any practical or useful statistic. There-
fore, as a viable alternative, we consider functions of “ordered” S, ..., S,,, which serve
almost the same purpose and lead to G-invariance. Obviously, the vector (S, ...,S,,) is
not by itself G-invariant: if we change for example the zero direction, then the new vector
of spacing-frequencies is a permutation of the original one. Solet Sy < - -+ < .5(,,,) denote
the ordered spacing-frequencies S, . . ., S,,. They constitute an invariant statistic for G and
so is any statistic based on these ordered values. The complete description is given by the
next proposition.

Proposition 3
1. T'is a symmetric function of Sy, ..., S, <= T is a function of (S, - - -, S(m))-

2. T is a symmetric function of Sy, ..., S,, = T is G-invariant.



134 GEOMETRY DRIVEN STATISTICS

Proof

1. (=) T is a function of any permutation of S;, . .., S,, and in particular of (5(1)’ ? B S(n)).

(<) T is invariant under permutations of S, ..., S, thatis, T'is a symmetric function of

these values.

2. By part 1, T'is a function of (S(y), ..., S(,,)). With Proposition 2, it is directly seen that

any G-transformation is without effect on these ordered values. O
We should remark that maximal invariance is, however, not obtained by (Seays -+ Stm))-

Proposition 4
The vector of ordered spacing-frequencies (Seays - - ., S(my) 1s not a maximal invariant
statistic under the group G.

Proof ‘

Denote by Sj,...,S,, the spacing-frequencies obtained by the new samples X and Y.
Denote also S(;y < -+ < .5, the corresponding ordered spacing-frequencies. “Maximal-
ity” means that

Sty =Sy, for k=1,....m = (X,Y) =g(X,Y), forsomeg € G.

However, S = §(k), for k=1,...,m, means exactly that (5,..., S.) is obtained
through a permutation of the elements of (S}, ...,S,,). This last situation can be obtained
in many different ways: for example, with X = X and with Y obtained from different
individual transforms of the elements of Y, in such a way that (S5, ..., S...) becomes the
desired permutation. It is then not necessary that X and ¥ derive from a change of origin or

sense of rotation, applied to X and Y simultaneously. Thus, we do not have maximality. [J

As a concrete counter-example, the G-invariant Wheeler—Watson statistic can be reex-
pressed as a function of (S;,...,S,,), but not as a function of (Saays -+ Smy) it is not a
symmetric function of the spacing-frequencies. See Example 6 for details. ’

i We may note the following observations about the unordered spacing-frequencies. First, -
S1,---,8, are exchangeable random variables under H, (i.e., any permutation of these
random variables is equiprobable and follows the Bose—Einstein distribution in statistical
mechanics). Second, consider any class of circular models parameterized by the null direc-
tion and by the sense of rotation. Then, (S;,..., S, ) is an ancillary statistic for this class
of models under H, that is, its distribution is invariant within this class.

6.2.2 An invariant class of spacing-frequencies tests

From the previous results, because the popular nonparametric Wilcoxon test statistic takes
the nonsymmetric form ) -, kS, it should not be used with circular data. Define N =
{0,1,...}. Assume h : N — R and h; :N—R,forj=1,...,m, satisfy certain mild reg-
ularity conditions. Holst and Rao (1980) consider nonparametric test statistics of the form
m m
T = D _h(S;) and T2, . =" h(S;), (6.5)
: o

J=1
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which are called the symmetric and the nonsymmetric test statistics based on
spacing-frequencies. As mentioned in Proposition 2, only the symmetric statistic 17,
is relevant with circular data, when considering G-invariance. However, the asymptotic
efficiencies of the nonsymmetric tests 777, , are shown to be superior by Holst and Rao
(1980), when considering data on the real line.

The limiting null distribution of the most general nonsymmetric statistic 7,,, ,, , when
{m,},>0 and {n,}, -, are nondecreasing sequences in N such that, as v — oo,

m, — oo, n, — 00 and p, &t %— — p, for some p € (0,00), (6.6)
is given by
e ha (S
Z] =] j( ) :u’ml, d N(O,l),
Tom,
where 11, and o2, are defined as follows. If V|, ...V, areii.d. geometric random variables
with 5
P[V—k]-( 1 > P for k=0,1 | 6.7)
1 - 1+,0 1+p7 — Yy ey s
then p,,, = E[D 7L, A ( )} and o2, = var(3_7, h;(V;) = B, 20, V;), in which G,
cov(D ity by (V3), Z )/var(zj Vi) refer to Corollary 3.1 on p. 41 of Holst and

Rao (1980).

One can see that the circular Wald and Wolfowitz (1940) run test (see Example 6) and
the circular Dixon (1940) test (see Example 5) have the symmetric form 7T,,, ,,, whereas
the Wheeler and Watson (1964) test (see Example 7) is nonsymmetric with respect to the
spacing-frequencies. One can also note that any linear function of the ranks Ry, ..., R,, in
the combined sample can be expressed in terms of the nonsymmetric statistic 7,,, ,,. Further
discussion on this type of tests can be found in Rao and Mardia (1980).

We now give two examples of symmetric statistics of the form given in (6.5). A third
example will be suggested later in Section 6.3.1. Then we present Wheeler—Watson test,

which will be analyzed numerically in Section 6.4.

Example 5 Dixon’s test Theorem 4.2 at p. 48 of Holst and Rao (1980) states that the
locally most powerful test among all symmetric tests in the spacing-frequencies given in

(6.5)1s -~
=> 52 (6.8)
j=1

Note that this local optimality is under a sequence of alternative cdf’s for ¥ that converge
to the cdf of X, both depending on the choices of zero direction and the sense of rotation,
see Equation (4.2) in Holst and Rao (1980).

Example 6 Wald-Wolfowitz run test Another example in the class of symmetric
two-sample test statistics is given by the circular version of Wald-Wolfowitz run test
statistic; see also David and Barton (1962). The Wald-Wolfowitz run test statistic 18 Tm)n
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as given by (6.5) with h(z) = I{z > 0}. We define a “Y-run” in the combined sample as
the largest nonempty group of adjacent Y-values. Since any positive value of S},...,S,,
constitute a Y-run, 7,,, . gives the number of ¥ -runs in the combined sample, and it takes
values in {1,...,m}. But in the circle, the number of X- and Y -runs must be same and
so 27, ,, gives the total number of runs made by the combined sample. Large values of
1., show evidence for equal spread, that is, for Hy. Note that Section 2.3 of Gatto (2000)
provides a saddlepoint approximation to the distribution of this statistic under Hy, in the

linear setting.

Example 7 Wheeler—Watson test This test has also been called the Mardia—
Watson—Wheeler test, see e.g. p. 101 of Batschelet (1981), and the uniform scores test. It
assumes absolute continuity of Py and Ps (in order to almost surely exclude ties). The
idea is the following. Adjust the values of X and Y by respecting their relative order,
in such a way to obtain m 4+ n equidistant values. So the spacings between any two
consecutive adjusted values are all equal and equal to 27 /(m + n). For a given choice of
origin and rotation sense, X and Y are thus mapped onto {27k/n};_; ,..,. The values
of X become 27R;/(m +n),...,2nR,_ /(m + n), which are called “uniform scores,”
where R,,..., R,, are, as before, the ranks of X in the combined sample. Because of
being uniformly spread, the overall resultant vector V' of the uniform scores is null, that is,
V = 0. However, since V = V. + V4., where Vi and V4 are the resultant vectors of the
transformed samples X and Y/, it follows that V5, = —V;,. (So only one of the statistics
Vx and V4 is relevant.) Under Hy, the two samples should be evenly spread over the
circumference and thus ||V || ~ ||V4-|| = 0. So a relevant decision rule is given by: reject
H, if ||Vx|| is large. But Vx can be obtained from the spacing-frequencies through (6.4),

i {écos (m2—{7—ran> }2 . {gsm <m2InR’“> }2

2 2
: T 2 Pl T 2T A
= cos k+ S +- sin k+ S. g
x ; S \m ; ’ ; m+n gz_: VAR

m n

which cannot have the symmetric form 7, ,, given in (6.5). From Proposition 3, it is not
a function of (Sy), ..., S(m)). However, ||[Vx|| is clearly G-invariant. This illustrates the
non-maximality of (S, ..., S(y)) claimed by Proposition 4.

Note, however, the following drawback inherent to this test in the presence of bimodal
distributions. Assume that the sample Y presents two similar modes, the second mode being
located approximately at the antimode. For various configurations of the sample X, these
modes lead to the cancelation in the uniform scores so that ||V || and ||V || tend to be small,
even without Hy being true. Low power is thus expected in these cases. Our extensive sim-
ulations in Section 6.4 provide a numerical confirmation. This weakness, as we remarked
in the introduction, is similar to that suffered by Rayleigh’s test for uniformity when used
in bimodal or multimodal samples.

6.2.3 Multispacing-frequencies tests

It turns out that the asymptotic power of the tests based on spacing-frequencies (6.5) can be
improved by considering larger spacings or gaps in the following sense. Let [ > 1 denote
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the order of the gap between the values of X and define the nonoverlapping or disjoint
multispacing-frequencies as

S(l ZI{YG X)), for j=1,...,r, with rd—(ﬁt%—lJ.

Soifl=1,thenr=m—1 ande(-l) = §;,forj=1,...,m — 1. In this case, 5, can be
defined as before.

Assume h: N — Rand h; : N— R, for j = 1,...,r, satisfy certain regularity condi-
tions (given under Assumption A in Jammalamadaka and Schweitzer 1985) and define the
general classes of test statistics /

=5 "n(SY) and TV Zh (9, (6.10)

which represent, respectively, the symmetric and the nonsymmetric test statistics based on
multispacing-frequencies. When [ = 1, both sums in (6.10) go up to m = r + 1 (instead
-of r). Jammalamadaka and Schweitzer (1985) establish the asymptotic normality of these-
statistics (and of similar statistics based on overlapping multispacing-frequencies), under
the null hypothesis and under asymptotically close alternatives as well. The locally most
powerful test, for a given smooth sequence of alternative c.d.f. of Y; converging toward the
cdf of X, is provided by Theorem 3.2 at pp. 41-42 of Jammalamadaka and Schweitzer

(1985). We reject Hy if
Zg < ) W,

for some ¢ € R, where the real-valued function g depends on the sequence of alternative
cdf of ¥; and on the cdf of X;. So the optimal test statistic has the nonsymmetric form 77, ,
given in (6.10). For the same reason that nonsymmetric statistics in spacing-frequencies
are not G-invariant and symmetric statistics are G-invariant, the nonsymmetric statistic
in the multispacing-frequencies TT(TZL)Z is not G-invariant, whereas the symmetric statistic
I T(,lL)n is G-invariant. Jammalamadaka and Schweitzer (1985) show that the sum of squared
multispacing-frequencies, leading to the statistic

TV, = Z (SJ(T))Q, 6.11)

j=1

is the optimal choice among all symmetric and nonoverlapping statistics. When [ = 1, this
is the Dixon (1940) statistic of Example 5. We may note that the multispacing-frequencies
statistics (6.10) are clearly nonsymmetric with respect to the roles given to the samples X

and Y': if the spacings would be defined by Y and the frequencies by X, then we would
obtain a different test statistic.

6.2.4 Conditional representation and computation of the
null distribution

For the most general statistics based on the multispacing-frequencies, consider the indepen-
dent random variables W7, . .., W, with the negative binomial distribution with parameters
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land p = p/(1 + p), namely

l k
s 1
P[lek]:<l+l" 1)( P > ( ) Cfor k=0,1,... (6.12)
k 1+p/) \1+4p

The next proposition tells that under Hy, the » multispacing-frequencies have the same
distribution as these negative binomial random variables, when conditioned to sum up to n.

Proposition 8
If Wy, ..., W, areindependent random variables with probability function (6.12), then Vp €
(0,80,

(SW, 8Dy ~ Wy, W) | Z, =n, (6.13)

r

where Z, =3 %, W,.

This conditional representation is the central argument for the determination of
the null asymptotic distribution of symmetric statistics, based on (nonoverlapping)
multispacing-frequencies. The next proposition is a direct consequence of Theorem 4.2 on
pp. 613-614 of Jammalamadaka and Schweitzer (1985).

Proposition 9
The following asymptotic distribution holds under H; and under the asymptotics (6.6),

Y (h(s?) - B} 2 M (0,D) .14

where 5

¢2 = var(h(Wy)) — - cov? (h(W7), Wy). (6.15)

1+p

We also note that the distributions of the most general test statistic Tﬁ); can be obtained

with saddlepoint approximation suggested by Gatto and Jammalamadaka (2006), which .
also exploits the conditional representation (6.13); see also Section 6.3.3.

6.3 Rao’s spacing-frequencies test for circular data

In this section, we provide an extension of the idea of Rao’s one-sample spacings
test (cf. Rao 1976) to the two-sample setting, making use of the spacing-frequencies.
Although the Wheeler—Watson test is a popular two-sample nonparametric test, Rao’s
spacing-frequencies test has a simple intuitive interpretation and has efficiencies compa-
rable to that of the locally most powerful Dixon’s test. It also admits a nice geometrical
interpretation, which is provided in Section 6.3.1. However, as mentioned in Example
6, Wheeler—Watson test has the drawback of not distinguishing the case where the
Py is bimodal at its antimode from Hj, a situation that often occurs when measuring
wind directions, see for example, Section 3 of Gatto and Jammalamadaka (2007). The
Wheeler—Watson test may have low power in this circumstance. A small sample power
comparison in this situation and with these three tests, namely, the Wheeler—Watson test,
the Dixon test, and the Rao spacing-frequencies test, is presented in Section 6.4.
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6.3.1 Rao’s test statistic and a geometric interpretation

Motivated by Rao’s one-sample spacings test which takes the form 7", [D, —
where Dy, ..., D, denote the (one-sample) spacings (i.e., the gaps between successive
points or the first-order differences) and which is widely used for testing isotropy of a single
sample, we will define what we will call “Rao’s two-sample spacing-frequencies test,” by

%i(s ——-1 (6.16)

This 1s symmetric in the spacing-frequencies and has been briefly mentioned 1n the study
by Rao and Mardia (1980).

An interesting geometrical interpretation can be given for this statistic similar to that
available for the Rao’s spacings test. We first note that

ij(S ———)=0 — Tm,nZimax{Sj~%,O}. (6.17)

7=1 i j=1 ‘

Consider for the moment a circle with circumference n (i.e.nS'/(27)) and consider the

spacing-frequencies Sj,...,S,, as spacings of a conceptual sample Z = (Z,,...,2,,)
on this circle, that is, Sj = Z(jﬂ) — Z(j), forj=1,...,m—1,and 5, = Z(l) — Z(m).
With this interpretation, we can consider the spacing-frequencies as {0, ..., n}-valued

random variables. On this circle, we then place m arcs of equal length n/m, starting at
each one of the m values of Z. In this situation, 7, ,, as given by (6.16) becomes the total
“uncovered part of the circumference” of this circle. The case T, , = 0 means that all
spacing-frequencies are exactly equal, that is,

S =

I
N
I
|

which is clearly the strong evidence for Hy : Py, = FPy-. On the other extreme, the case
T, , =n(l—1/m)means that

Jj€{l,...,n}, such that S; =n and S, =0, Vk#j e {1,...,n},

which is the strong evidence against Hy, that is, for dissimilarity between Py and Py .

6.3.2 Exact distribution

It is difficult to obtain an analytical expression for the exact distribution of the circular
Rao’s spacing-frequencies test statistic given in (6.16). One can, however, obtain a formula
for its characteristic function, along the lines of Bartlett (1938); see also Mirakhmedov et al.
(2014). More generally, we consider the symmetric test statistic T,,, ,, given in (6.5).

Consider the negative binomial random variables given in (6.12) with [ =1 and ¢ :
(R™,B(R™)) — (R,B(R)). Letv € Rand k € N, then

E[p(Wy,..., W,,)ev"n Ze“’kP = KE[o(W,,...,W..) | Z,, = K]
k=0
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(where Z,,, = Z;ﬂzl W;). The right side of the aforementioned equation is a Fourier series
and from Fourier inversion we obtain

Elp(W,...,.W,.) | Z,, = k] =

PIZ. =] / Ele(Wy,..., W, )e¥Zn=k)]dy.

(6.18)
The conditional representation (6.13) directly yields

Elp(Sy, -+, 50)l = Elo(Wr,... . W) | Z, = ],

which together with (6.18) at £ = n yields

T

1 ;
— W iw(Zm—n)

Define v=E[W;]=(1—p)/p=p"" and 7°=var(W;) = (1—-p)/p* = (1+p)/p.
Given the function h of the symmetric test statistic given in (6.5) and v;, vy € R, we define

w@}lv U2) =

E |exp {12t (nwa) — Elnowy)] - AT

T

(W, — y)> + i%(Wl - V)H

and

A 1
Y (v1,T) = \/—2——7r/—7m/m

for z € R, where (; is defined by (6.15). This last result and the inversion formula for the
probability P[Z,, = n] provide a Bartlett-type formula for the characteristic function of

1 Z{ e I L UAN AT U)} )_

e_ivﬂwm (Ul ) ’02>d’02,

T
"5

which is given by

A~

E [gtUmn] — ¥n(:2) (6.19)
= e

Getting an analytical form for this characteristic function and inverting it to the exact prob-
ability is a difficult task, although asymptotic distribution and Edgeworth expansion can be
obtained along the lines of Mirakhmedov et al. (2014).

However, given that one can compute the list of all possible realizations of (S, ..., S, ),
for any given n > 1, one can actually compute the value of the statistic for each of these
(”JrZ‘_l) equiprobable configurations and in this way determine the exact probability dis-
tribution of Rao’s spacing-frequencies statistic 7, ,,, given in (6.10).

6.3.3 Saddlepoint approximation

An alternative to finding all possible realizations of the spacing-frequencies is to
approximate the exact distribution of Rao’s spacing-frequencies statistic by the saddlepoint
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approximation. The saddlepoint approximation is a large deviations technique, which
provides approximations to the exact distributions with bounded relative error. It is thus a
very accurate method for computing small tail probabilities. It was introduced in statistics
by Daniels (1954). In this section, we provide the cumulant generating function required
for computing the saddlepoint approximation of Gatto and Jammalamadaka (1999) to the
distribution of Rao’s spacing-frequencies test statistics, under Hy.

For this purpose, we reexpress Rao’s spacing-frequencies statistic (6.16) in the general
M-statistic form 3 772, 91 (S;, Ty, ) = 0, where

—z)— L, ifz<
Ly 4 ifg>

m’

—~
B 3]

1/]1(337151):%%—3;'_21_:{

33 33

[N N T
—~
l

We also define i, (z, t,) = = — t,/m. Next, we compute the following joint cumulant gen-
erating function of these scores,

K (v, 3y, t5) = log { Elexp{ugthy (Wy, t2) + vytho (Wy, 1)}

‘where VV1 has the distribution (6.12) with [ = 1, which is a geometric distribution. Aftef
algebraic simplifications, we find

K(U1>U2;t17t2): L_&J_}_l

logp + log (exp {% [vl (g— — t1> - Ugtz}} 1 - {(1 — LID)eUz—'vz‘l}v1

1-(1-ple» 7

&)+

o [ (3t o} L2

2 1—(1—pe?+ )

Vv, v € R such that v,/2 4 vy < —log(l —p). The saddlepoint approximation to
P[T,, ,, > t;] can now be obtained by a direct application of Step 1 and Step 2 provided
at p. 534 of Gatto and Jammalamadaka (1999) to the function K,, = nK, where K is the
cumulant generating function given by the aforementioned formula. We also set t, = n
and p = p,/(p, + 1), where p, = m/n, see (6.6). One may refer to Gatto (2000) for a
continuity correction for the case where the statistic is discrete, as it is the case here, and
also for an algorithm for computing the quantiles, that is, the critical values of the test.

Although this approximation represents only the leading term of an asymptotic series, its
accuracy is very good, even for small values of 7 and n and for very small tail probabilities.
For the “exponential score” spacing-frequencies statistic, Table 1 in Gatto (2000) shows that
with sample sizes as small as m = 4 and n = 12, this approximation is good: it yields 12%
as relative error when applied to the upper tail probability 1%.

6.4 Monte Carlo power comparisons

This section presents a comparison of the power of Wheeler—Watson, Dixon’s and Rao’s
spacing-frequencies tests, under a specific deviation from the null hypothesis, which appear
unfavorable for Wheeler—Watson test. Numerical evaluations are done by Monte Carlo
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simulation, because it does not seem possible to extend the saddlepoint approximation
of Section 6.3.3 to distributions under the alternative hypothesis. The reason is that the
conditional representation (6.13) is valid only under the null hypothesis.

As is done on the real line, it is possible through a probability integral transform to make
the distribution of say X uniform. Thus, let us consider the null hypothesis (6.1) wherein Py
is the circular uniform distribution with density fx (0) = 1/(27), V6 € R, and alternatives
where and P is a generalized von Mises distribution (GvM) of order two, with density
given by

0 < - 0 2(6
Fy (0| 1y g, Ky, Rg) = 921Gy (6, oy, o) exp{ry cos(0 — py) + Ky cos2(0 — py)},
(6.20)
V0 € R, where u; € [0,27), py € [0,7), Ky, 59 > 0, § = (4 — py)modr and where the
normalizing constant is given by

i 27
Gy(6, k1, ky) = py /0 exp{ky cos @ + kycos2(0 + 0)}dé.

A circular random variable with density (6.20) is denoted GVM (41, ft9, K1, K9). We refer to
Gatto and Jammalamadaka (2007) for various interesting theoretical properties and char-
acterizations regarding this class of distributions. We note that the well-known von Mises
distribution is obtained by setting s, = 0 in (6.20) and that the uniform distribution (with
density fy) is obtained by setting k; = x5 = 0 in (6.20).

We consider alternative hypotheses where Py, is the GvM distribution with p; = py =
0,x; = 0.1and k, € {0.5,1,...,7}. The graphs of some of these densities, over the interval
[—m, ), are given in Figure 6.1. We can see that each density is symmetric around zero
and possesses two clear and quite similar modes. Figure 6.1 shows also that these GvM
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Figure 6.1 GvM densities over [—m, 7) with u; = py = 0, k; = 0.1 and ko, = 0.5 (solid
line), k, = 2 (dashed line), ky = 7 (dashed-dotted line).
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densities deviate increasingly from uniformity as the value of x, increases. We compare the
small sample power of the following tests: Wheeler—Watson test (see Example 7), Dixon’s
test (see Example 5) and Rao’s spacing-frequencies test (see Section 6.3.1). All tests have
(approximate) size 5% and the selected sample sizes are m = 15 and n = 25. Let us rewrite
Wheeler-Watson test statistic ||V || given in (6.9) as TX ., and let us denote its o™ upper
tail quantile as ¢/, Let us also rewrite Dixon’s spacing-frequencies test statistic T, , given
in (6.8) as Tnﬂzn and let us denote its '™ upper tail quantile as t2. Let us also rewrite Rao’s
spacing-frequencies test statistic 7, ,, given in (6.16) as T;f:m and let us denote its o*®
upper tail quantile as tZ. Large values of TTZV, "o Tf,;),n, and Tnﬁn provide evidence against
H,. Based on 0.5 - 10° Monte Carlo simulations, we obtain t}/;s = 5.3305, t&;; = 149, and
tfts = 14.6667. In this setting, the powers of Wheeler—Watson and Rao’s tests have been
computed for various values of #,, each time based on 10° Monte Carlo generations.

The results are displayed in Table 6.1. We see that Wheeler—-Watson test appears
substantially less powerful for distinguishing the uniform distribution from the selected
bimodal GvM distributions. This confirms the claim given at the end of Example 7, that
the Wheeler—Watson test may not be appropriate when dealing with bimodal distributions
displaying two similar well-separated modes with one at the antimode. Dixon’s and Rao’s,
spacing-frequencies test behave substantially better in this case. For other configurations
with less accentuated bimodality, the power of Wheeler—Watson test is closer to the one of
its competitors. Nevertheless, this important result and conclusion are in the same spirit as
the well-known result that the Rayleigh test in one-sample case loses to tests such as the
one-sample Rao’s spacings test and is indeed inappropriate, when the data is not unimodal.
We see also that Dixon’s test shows slightly better power than Rao’s test when x, 1s
small, that is, close to the null hypothesis and is known to be asymptotically locally most

Table 6.1 Power comparison between Wheeler—Watson, Dixon’s and

Rao’s tests.

Ko Pm {an/,n > t(%5l Prc-g [T£,n > t(?OS] P/s;) [Trg,n > tg)z,OS]
0.5 0.060 0.090 0.056
1.0 0.074 0.189 0.142
1.5 0.090 0.326 0.291
2.0 0.104 0.462 0.456
2.5 0.117 0.563 0.588
3.0 0.127 0.641 0.684
3.5 0.134 0.670 0.754
4.0 0.141 0.743 0.804
4.5 0.146 0.776 0.841
5.0 0.151 0.803 0.866
5.5 0.153 0.824 0.887
6.0 0.157 0.843 0.903
6.5 0.161 0.859 0.918
7.0 0.161 0.870 0.928

Py : uniform distribution. Py-: GvM distribution with p1; = puy = 0, Ky =
0.1and x, = 0.5,1,...,7. Bach probability is obtained from 10° simula-
tions. Size of tests: 5%. m = 15, n = 25.
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powerful test among the symmetric tests in (6.5). However, this small advantage turns in
favor of Rao’s test as k, increases.
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